Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Wireless Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wireless Networks
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient data rate maximization algorithm for OFDM based wireless networks

Authors: Modlic, Borivoj; Bažant, Alen; Ilić, Željko;

An efficient data rate maximization algorithm for OFDM based wireless networks

Abstract

In this paper we present a computationally efficient, suboptimal integer bit allocation algorithm that maximizes the overall data rate in multiuser orthogonal frequency division multiplexing (OFDM) systems implemented in wireless networks. Assuming the complete knowledge of a channel and allowing a subchannel to be simultaneously shared by multiple users we have solved this data rate maximization problem in two steps. The first step provides subchannel assignment to users considering the users' requests on quality of service (QoS) expressed as the minimum signal-to-noise ratio (SNR) on each subchannel. The second step provides transmit power and bit allocation to subchannels in order to maximize the overall data rate. To reduce computational complexity of the problem we propose a simple method which assigns subchannels to users and distributes power and bits among them. We have analyzed the performance of our proposed algorithm by simulation in a multiuser frequency selective fading environment for various signal-to-noise ratios and various numbers of users in the system. We have concluded that our algorithm, unlike other similar algorithms, is suitable for OFDM wireless networks, especially when signal-to-noise ratio in the channel is low. Also, the results have shown that the total data rate grows with the number of users in the system.

Related Organizations
Keywords

wireless networks, multiuser OFDM system, QoS, power allocation algorithm, wireless networks; multiuser OFDM system; bit allocation algorithm; power allocation algorithm; QoS, bit allocation algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!