
Summary: For a linear convex mathematical programming (MP) problem with equality and inequality constraints in a Hilbert space, a dual-type algorithm is constructed that is stable with respect to input data errors. In the algorithm, the dual of the original optimization problem is solved directly on the basis of Tikhonov regularization. It is shown that the necessary optimality conditions in the original MP problem are derived in a natural manner by using dual regularization in conjunction with the constructive generation of a minimizing sequence. An iterative regularization of the dual algorithm is considered. A stopping rule for the iteration process is presented in the case of a finite fixed error in the input data.
Linear operators and ill-posed problems, regularization, regularization algorithm, stopping rule, duality, Optimality conditions for problems involving partial differential equations, linearly convex problem, dual iteration regularization, mathematical programming
Linear operators and ill-posed problems, regularization, regularization algorithm, stopping rule, duality, Optimality conditions for problems involving partial differential equations, linearly convex problem, dual iteration regularization, mathematical programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
