
arXiv: 2312.07280
One of the key factors in language productivity and human cognition is the ability of Systematic Compositionality, which refers to understanding composed, unseen examples of seen primitives. However, recent evidence reveals that the Transformers have difficulty in generalizing the composed context based on the seen primitives. To this end, we take the first step to propose a compositionality-aware Transformer called CAT and two novel pre-training tasks to facilitate the systematic compositionality. We tentatively provide a successful implementation of a multi-layer CAT on the basis of the especially popular BERT. The experimental results demonstrate that CAT outperforms baselines on compositionality-aware tasks with minimal impact on effectiveness on standardized language understanding tasks.
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
FOS: Computer and information sciences, Computer Science - Computation and Language, Computation and Language (cs.CL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
