
AbstractStream clustering has emerged as a vital area for processing streaming data in real-time, facilitating the extraction of meaningful information. While efficient approaches for defining and updating clusters based on similarity criteria have been proposed, outliers and noisy data within stream clustering areas pose a significant threat to the overall performance of clustering algorithms. Moreover, the limitation of existing methods in generating non-spherical clusters underscores the need for improved clustering quality. As a new methodology, we propose a new stream clustering approach, MCMSTStream, to overcome the abovementioned challenges. The algorithm applies MST to micro-clusters defined by using the KD-Tree data structure to define macro-clusters. MCMSTStream is robust against outliers and noisy data and has the ability to define clusters with arbitrary shapes. Furthermore, the proposed algorithm exhibits notable speed and can handling high-dimensional data. ARI and Purity indices are used to prove the clustering success of the MCMSTStream. The evaluation results reveal the superior performance of MCMSTStream compared to state-of-the-art stream clustering algorithms such as DenStream, DBSTREAM, and KD-AR Stream. The proposed method obtained a Purity value of 0.9780 and an ARI value of 0.7509, the highest scores for the KDD dataset. In the other 11 datasets, it obtained much higher results than its competitors. As a result, the proposed method is an effective stream clustering algorithm on datasets with outliers, high-dimensional, and arbitrary-shaped clusters. In addition, its runtime performance is also quite reasonable.
Minimum spanning tree, Stream clustering, Micro-cluster
Minimum spanning tree, Stream clustering, Micro-cluster
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
