Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minimization of Energy and Service Latency Computation Offloading using Neural Network in 5G NOMA System

Authors: P.G Suprith; Mohammed Riyaz Ahmed;

Minimization of Energy and Service Latency Computation Offloading using Neural Network in 5G NOMA System

Abstract

The future Internet of Things (IoT) era is anticipated to support computation-intensive and time-critical applications using edge computing for mobile (MEC), which is regarded as promising technique. However, the transmitting uplink performance will be highly impacted by the hostile wireless channel, the low bandwidth, and the low transmission power of IoT devices. Using edge computing for mobile (MEC) to offload tasks becomes a crucial technology to reduce service latency for computation-intensive applications and reduce the computational workloads of mobile devices. Under the restrictions of computation latency and cloud computing capacity, our goal is to reduce the overall energy consumption of all users, including transmission energy and local computation energy. In this article, the Deep Q Network Algorithm (DQNA) to deal with the data rates with respect to the user base in different time slots of 5G NOMA network. The DQNA is optimized by considering more number of cell structures like 2, 4, 6 and 8. Therefore, the DQNA provides the optimal distribution of power among all 3 users in the 5G network, which gives the increased data rates. The existing various power distribution algorithms like frequent pattern (FP), weighted least squares mean error weighted least squares mean error (WLSME), and Random Power and Maximal Power allocation are used to justify the proposed DQNA technique. The proposed technique which gives 81.6% more the data rates when increased the cell structure to 8. Thus 25% more in comparison to other algorithms like FP, WLSME Random Power and Maximal Power allocation.

Related Organizations
Keywords

Telecommunication, deep q network algorithm, mobile edge computing, Electrical engineering. Electronics. Nuclear engineering, TK5101-6720, latency optimized, 5g, computation offloading, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold