Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Information Management Data Insights
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automating attendance management in human resources: A design science approach using computer vision and facial recognition

Authors: Bao-Thien Nguyen-Tat; Minh-Quoc Bui; Vuong M. Ngo;

Automating attendance management in human resources: A design science approach using computer vision and facial recognition

Abstract

Haar Cascade is a cost-effective and user-friendly machine learning-based algorithm for detecting objects in images and videos. Unlike Deep Learning algorithms, which typically require significant resources and expensive computing costs, it uses simple image processing techniques like edge detection and Haar features that are easy to comprehend and implement. By combining Haar Cascade with OpenCV2 on an embedded computer like the NVIDIA Jetson Nano, this system can accurately detect and match faces in a database for attendance tracking. This system aims to achieve several specific objectives that set it apart from existing solutions. It leverages Haar Cascade, enriched with carefully selected Haar features, such as Haar-like wavelets, and employs advanced edge detection techniques. These techniques enable precise face detection and matching in both images and videos, contributing to high accuracy and robust performance. By doing so, it minimizes manual intervention and reduces errors, thereby strengthening accountability. Additionally, the integration of OpenCV2 and the NVIDIA Jetson Nano optimizes processing efficiency, making it suitable for resource-constrained environments. This system caters to a diverse range of educational institutions, including schools, colleges, vocational training centers, and various workplace settings such as small businesses, offices, and factories. ... The system's affordability and efficiency democratize attendance management technology, making it accessible to a broader audience. Consequently, it has the potential to transform attendance tracking and management practices, ultimately leading to heightened productivity and accountability. In conclusion, this system represents a groundbreaking approach to attendance tracking and management...

31 pages, accepted to publish by the International Journal of Information Management Data Insights (IJIMDS) in 2024

Keywords

Embedded computer, FOS: Computer and information sciences, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Computer Science - Human-Computer Interaction, Information technology, Systems and Control (eess.SY), T58.5-58.64, Electrical Engineering and Systems Science - Systems and Control, Human-Computer Interaction (cs.HC), Artificial Intelligence (cs.AI), Machine learning, Hardware Architecture (cs.AR), FOS: Electrical engineering, electronic engineering, information engineering, Attendance management system, Face recognition, Computer Science - Hardware Architecture, Haar cascade classification

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
Green
gold