
doi: 10.4314/jfas.v9i4s.7
Conventionally, numerical integration algorithm is executed in software and time consuming to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a much faster, very efficient and reliable alternative to implement the numerical integration algorithm. This paper proposed a hardware implementation of four numerical integration algorithms using FPGA. The computation is based on Left Riemann Sum (LRS), Right Riemann Sum (RRS), Middle Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is evaluated based on target chip Altera Cyclone IV FPGA in the metrics of resources utilization, clock latency, execution time, power consumption and computational error compared to the other algorithms. The result also shows execution time of the FPGA are much faster compared to the software implementation.Keywords: numerical integration algorithm; FPGA; Riemann sum; trapezoidal sum
numerical integration algorithm; FPGA; Riemann sum; trapezoidal sum, QA Mathematics
numerical integration algorithm; FPGA; Riemann sum; trapezoidal sum, QA Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
