Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry - An Asian...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - An Asian Journal
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Understanding the Organometallic Step: SO2 Insertion into Bi(III)−C(Ph) Bond

Authors: Wing Hei Marco Wong; Xueying Guo; Hok Tsun Chan; Tilong Yang; Zhenyang Lin;

Understanding the Organometallic Step: SO2 Insertion into Bi(III)−C(Ph) Bond

Abstract

AbstractHeavier main‐group element‐catalyzed reactions provide an increasingly attractive tool to perform transformations mimicking the behaviors of transition metal catalysts. Recently, Magre and Cornella reported a Bi‐catalyzed synthesis of aryl sulfonyl fluorides, which involves a fundamental organometallic step of SO2 insertion into the Bi−Ph bond. Our theoretical studies reveal that i) the ability of hypervalent coordination of the Bi(III) center allows facile coordination sphere expansion for the SO2 coordination via one oxygen atom; and ii) the high polarity of the Bi−Ph bond makes the Ph migration from the Bi(III) center feasible. These features enable the heavier main group element to resemble the transition metal having flexibility for ligand association and dissociation. Furthermore, iii) the available π electron pair of the migrating Ph group stabilizes the SO2 insertion transition state by maintaining interaction with the Bi(III) center during migration. The insight helps us better understand the heavier main‐group catalysis.

Related Organizations
Keywords

Bismuth chemistry, Main group catalysis, DFT calculations, Principal interacting orbital (PIO), Structure and bonding analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!