Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FER Repositoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FER Repository
Article . 2025
License: CC BY NC ND
Data sources: FER Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Robotics and Autonomous Systems
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MOVRO2: Loosely coupled monocular visual radar odometry using factor graph optimization

Authors: Vlaho-Josip Stironja; Juraj Persic; Luka Petrovic; Ivan Markovic; Ivan Petrovic;

MOVRO2: Loosely coupled monocular visual radar odometry using factor graph optimization

Abstract

Ego-motion estimation is an indispensable part of any autonomous system, especially in scenarios where wheel odometry or global pose measurement is unreliable or unavailable. In an environment where a global navigation satellite system is not available, conventional solutions for ego-motion estimation rely on the fusion of a LiDAR, a monocular camera and an inertial measurement unit (IMU), which is often plagued by drift. Therefore, complementary sensor solutions are being explored instead of relying on expensive and powerful IMUs. In this paper, we propose a method for estimating ego-motion, which we call MOVRO2, that utilizes the complementarity of radar and camera data. It is based on a loosely coupled monocular visual radar odometry approach within a factor graph optimization framework. The adoption of a loosely coupled approach is motivated by its scalability and the possibility to develop sensor models independently. To estimate the motion within the proposed framework, we fuse ego-velocity of the radar and scan-to-scan matches with the rotation obtained from consecutive camera frames and the unscaled velocity of the monocular odometry. We evaluate the performance of the proposed method on two open-source datasets and compare it to various mono-, dual- and three-sensor solutions, where our cost-effective method demonstrates performance comparable to state-of-the-art visual-inertial radar and LiDAR odometry solutions using high-performance 64-line LiDARs.

Country
Croatia
Related Organizations
Keywords

TECHNICAL SCIENCES. Electrical Engineering. Automation and Robotics., radar odometry, TEHNIČKE ZNANOSTI. Elektrotehnika. Automatizacija i robotika., factor graph optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green