Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM SIGARCH Computer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/isca.2...
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic generation of efficient accelerators for reconfigurable hardware

Authors: David Koeplinger; Raghu Prabhakar; Yaqi Zhang; Christina Delimitrou; Christos Kozyrakis; Kunle Olukotun;

Automatic generation of efficient accelerators for reconfigurable hardware

Abstract

Acceleration in the form of customized datapaths offer large performance and energy improvements over general purpose processors. Reconfigurable fabrics such as FPGAs are gaining popularity for use in implementing application-specific accelerators, thereby increasing the importance of having good high-level FPGA design tools. However, current tools for targeting FPGAs offer inadequate support for high-level programming, resource estimation, and rapid and automatic design space exploration. We describe a design framework that addresses these challenges. We introduce a new representation of hardware using parameterized templates that captures locality and parallelism information at multiple levels of nesting. This representation is designed to be automatically generated from high-level languages based on parallel patterns. We describe a hybrid area estimation technique which uses template-level models and design-level artificial neural networks to account for effects from hardware place-and-route tools, including routing overheads, register and block RAM duplication, and LUT packing. Our runtime estimation accounts for off-chip memory accesses. We use our estimation capabilities to rapidly explore a large space of designs across tile sizes, parallelization factors, and optional coarse-grained pipelining, all at multiple loop levels. We show that estimates average 4.8% error for logic resources, 6.1% error for runtimes, and are 279 to 6533 times faster than a commercial high-level synthesis tool. We compare the best-performing designs to optimized CPU code running on a server-grade 6 core processor and show speedups of up to 16.7×.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!