
arXiv: 2404.04566
Large Language Models (LLMs) have recently shown remarkable capabilities in various software engineering tasks, spurring the rapid growth of the Large Language Models for Software Engineering (LLM4SE) area. However, limited attention has been paid to developing efficient LLM4SE techniques that demand minimal computational cost, time, and memory resources, as well as green LLM4SE solutions that reduce energy consumption, water usage, and carbon emissions. This article aims to redirect the focus of the research community toward the efficiency and greenness of LLM4SE, while also sharing potential research directions to achieve this goal. It commences with a brief overview of the significance of LLM4SE and highlights the need for efficient and green LLM4SE solutions. Subsequently, the article presents a vision for a future where efficient and green LLM4SE revolutionizes the LLM-based software engineering tool landscape, benefiting various stakeholders, including industry, individual practitioners, and society. The article then delineates a roadmap for future research, outlining specific research paths and potential solutions for the research community to pursue. While not intended to be a definitive guide, the article aims to inspire further progress, with the ultimate goal of establishing efficient and green LLM4SE as a central element in the future of software engineering.
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
