Downloads provided by UsageCounts
handle: 11503/1986
The tunicate swarm algorithm (TSA) is a newly proposed population-based swarm optimizer for solving global optimization problems. TSA uses best solution in the population in order improve the intensification and diversification of the tunicates. Thus, the possibility of finding a better position for search agents has increased. The aim of the clustering algorithms is to distributed the data instances into some groups according to similar and dissimilar features of instances. Therefore, with a proper clustering algorithm the dataset will be separated to some groups with minimum similarities. In this work, firstly, an approach based on TSA algorithm has proposed for solving partitional clustering problem. Then, the TSA algorithm is implemented on ten different clustering problems taken from UCI Machine Learning Repository, and the clustering performance of the TSA is compared with the performances of the three well known clustering algorithms such as fuzzy c-means, k-means and k-medoids. The experimental results and comparisons show that the TSA based approach is highly competitive and robust optimizer for solving the partitional clustering problems.
Clustering;fuzzy c-means;k-means;k-medoid;tunicate swarm algorithm, Yapay Zeka, Artificial Intelligence, Fuzzy c-means, Tunicate swarm algorithm, K-medoid, K-means, Clustering
Clustering;fuzzy c-means;k-means;k-medoid;tunicate swarm algorithm, Yapay Zeka, Artificial Intelligence, Fuzzy c-means, Tunicate swarm algorithm, K-medoid, K-means, Clustering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 27 | |
| downloads | 21 |

Views provided by UsageCounts
Downloads provided by UsageCounts