Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Direct Electron Transfer of Glucose Oxidase and Carbon Nanotubes Entrapped with Biocompatible Organic Materials

Authors: Kim, Ji Hyeon; Lee, Hye Jung; Jung, Haesook; Song, Hyun-Kon; Yoon, Hyon Hee; Won, Keehoon;

Direct Electron Transfer of Glucose Oxidase and Carbon Nanotubes Entrapped with Biocompatible Organic Materials

Abstract

Efficient electron transfer between redox enzymes and electrodes is essential for enzyme-based biosensors, biofuel cells, and bioelectronic devices. Generally glucose oxidase (GOx) requires mediators for electrical communication with electrodes because the redox center of GOx is deeply buried in the insulating protein shell. In the present work, direct electron transfer (DET) between GOx and electrodes was attempted. GOx and carbon nanotubes (CNTs) were immobilized on a glassy carbon (GC) electrode by using biocompatible polymer, chitosan (CHI). Cyclic voltammograms revealed that the CHI/GOx/CNT-GC electrode showed a pair of well-defined redox peaks in 0.1 M phosphate buffer solution (pH 7.0) saturated with argon. Under the same conditions, no redox peak was observed in the absence of CNTs. The formal redox potential was −450 mV (vs. Ag/AgCl), which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the DET between the GOx and the electrode was achieved. The use of...

Keywords

Biocompatible polymer, Phosphate buffer solutions, Cyclic voltammograms, Redox potentials, 500, Biofuel cell, Redox enzyme, Redox peaks, Organic materials, 540, GC electrode, Catalytic activity, Ag/AgCl, Electron transfer, Direct electron transfer, Enzyme-based biosensors, Glassy carbon electrodes, Redox centers, Bioelectronic device

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!