Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Electronics and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Electronics and Electrical Engineering
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/nc...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/kd...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation-based probabilistic-harmonic load flow for the study of DERs integration in a low-voltage distribution network

تدفق الحمل الاحتمالي التوافقي القائم على المحاكاة لدراسة تكامل DERS في شبكة توزيع منخفضة الجهد
Authors: Cristian Cadena-Zarate; Juan Caballero-Peña; Germán Osma-Pinto;

Simulation-based probabilistic-harmonic load flow for the study of DERs integration in a low-voltage distribution network

Abstract

<abstract><p>The integration of distributed energy resources (DERs) and, therefore, power electronic devices into distribution networks leads to harmonic distortion injection. However, studying harmonic distortion solely through deterministic approaches presents challenges due to the inherent random behavior of DERs. This study introduced a strategy that leverages PowerFactory's harmonic load flow tool. By combining it with Python co-simulation, probabilistic load flows can be developed. These load flows utilize current sources to represent harmonic distortion emitters with predefined harmonic spectra. The proposed strategy was implemented on a real network, where two different capacities of DERs were integrated at various locations within the network. The distributions for the total harmonic distortion of voltage ($ THD_{v} $) and the total harmonic distortion of current ($ THD_{i} $) were obtained 24 hours a day in nodes and lines of the network. The procedure allowed considering the uncertainty associated to the DERs integration in distribution networks in the study of harmonic distortion, which, speaking from a simulation approach, is scarce in the literature.</p></abstract>

Keywords

Artificial intelligence, Power Line Communications in Smart Grid, Transmission Planning, Distributed Generation, ders, Mechanics, probabilistic, harmonic, Engineering, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Safety, Risk, Reliability and Quality, Probabilistic logic, Optimal Power Flow, Spectrum Balancing, Electronic engineering, Physics, powerfactory, Harmonic, Voltage, Acoustics, Computer science, TK1-9971, python, Integration of Distributed Generation in Power Systems, Reliability Assessment of Wind Power Generation Systems, Electrical engineering, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, Flow (mathematics)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold