Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Современные информац...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Периодические решения не малой амплитуды квазилинейного уравнения колебаний двутавровой балки

Periodic solutions of a non-small amplitude of the quasilinear equation for oscillations of an I-beam
Authors: Rudakov, I.A.; Romanenco, E.V.;

Периодические решения не малой амплитуды квазилинейного уравнения колебаний двутавровой балки

Abstract

Исследуется задача о периодических по времени решениях квазилинейного уравнения вынужденных колебаний двутавровой балки с шарнирно опертыми концами. Нелинейное слагаемое и правая часть уравнения являются периодическими по времени функциями. В работе изучается случай, когда период времени соизмерим с длиной балки. Решение ищется в виде ряда Фурье. Для доказательства сходимости рядов Фурье и их производных исследуются собственные значения дифференциального оператора, соответствующего линейной части уравнения. Получены условия, при которых ядро дифференциального оператора является конечномерным и обратный оператор является вполне непрерывным на дополнении к ядру. Доказана лемма о существовании и регулярности решений соответствующей линейной задачи. Доказательство опирается на свойства сумм рядов Фурье. Доказана теорема о существовании и регулярности периодического решения, если нелинейное слагаемое удовлетворяет условию нерезонансности на бесконечности. Из условия нерезонансности вытекает тот факт, что при больших по модулю значениях аргумента график нелинейного слагаемого не пересекает прямых, угловой коэффициент которых является собственным значением линейной части уравнения. При доказательстве теоремы проводится априорная оценка решений соответствующего операторного уравнения и применяется принцип Лере-Шаудера о неподвижной точке. Получены дополнительные условия, при которых найденное в основной теореме периодическое решение является единственным. The problem of time-periodic solutions of the quasilinear equation of forced oscillations of an I-beam with hinged ends is investigated. The nonlinear summand and the right side of the equation are time periodic functions. The paper studies the case when the time period is commensurate with the length of the beam. The solution is sought in the form of a Fourier series. To prove the convergence of the Fourier series and their derivatives, we study the eigenvalues of the differential operator corresponding to the linear part of the equation. Conditions are obtained under which the kernel of a differential operator is finite-dimensional and the inverse operator is completely continuous on the complement of the kernel. A lemma on the existence and regularity of solutions of the corresponding linear problem is proved. The proof is based on the properties of the sums of the Fourier series. A theorem on the existence and regularity of a periodic solution is proved if the nonlinear term satisfies the non-resonance condition at infinity. The non-resonance condition implies the fact that, for large values of the argument, the graph of the non-linear term does not intersect the straight lines whose slope is an eigenvalue of the linear part of the equation. In the proof of the theorem, an a priori estimate is made of the solutions of the corresponding operator equation and the Leray-Schauder principle of a fixed point is applied. Additional conditions are obtained under which the periodic solution found in the main theorem is unique.

Related Organizations
Keywords

ряды Фурье, fixed points, Колебания балки, периодические решения, periodic solutions, Fourier series, неподвижные точки, Beam oscillations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold