Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Article . 2009
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Dependable and Secure Computing
Article . 2009 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Bicriteria Scheduling Heuristics Providing a Guaranteed Global System Failure Rate

Authors: Girault, Alain; Kalla, Hamoudi;

A Novel Bicriteria Scheduling Heuristics Providing a Guaranteed Global System Failure Rate

Abstract

We propose a new framework for the (length,reliability) bicriteria static multiprocessor scheduling problem. Our first criterion remains the schedule's length, crucial to assess the system's real-time property. For our second criterion, we consider the global system failure rate, seen as if the whole system were a single task scheduled onto a single processor, instead of the usual reliability, because it does not depend on the schedule length like the reliability does (due to its computation in the classical exponential distribution model). Therefore, we control better the replication factor of each individual task of the dependency task graph given as a specification, with respect to the desired failure rate. To solve this bicriteria optimization problem, we take the failure rate as a constraint, and we minimize the schedule length. We are thus able to produce, for a given dependency task graph and multiprocessor architecture, a Pareto curve of non-dominated solutions, among which the user can choose the compromise that fits his requirements best. Compared to the other bicriteria (length,reliability) scheduling algorithms found in the literature, the algorithm we present here is the first able to improve significantly the reliability, by several orders of magnitude, making it suitable to safety critical systems.

Country
France
Keywords

Testing, availability, 004, 620, and Fault-Tolerance, ACM: B.: Hardware/B.8: PERFORMANCE AND RELIABILITY/B.8.1: Reliability, ACM: C.: Computer Systems Organization/C.4: PERFORMANCE OF SYSTEMS/C.4.1: Fault tolerance, [INFO.INFO-PF]Computer Science [cs]/Performance [cs.PF], [INFO.INFO-PF] Computer Science [cs]/Performance [cs.PF], ACM: C.: Computer Systems Organization/C.3: SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS/C.3.2: Real-time and embedded systems, ACM: C.: Computer Systems Organization/C.4: PERFORMANCE OF SYSTEMS/C.4.5: Reliability, and serviceability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
Green
bronze