
arXiv: 1808.03616
The interest in polar codes has been increasing significantly since their adoption for use in the 5$^{\rm th}$ generation wireless systems standard. Successive cancellation (SC) decoding algorithm has low implementation complexity, but yields mediocre error-correction performance at the code lengths of interest. SC-Flip algorithm improves the error-correction performance of SC by identifying possibly erroneous decisions made by SC and re-iterates after flipping one bit. It was recently shown that only a portion of bit-channels are most likely to be in error. In this work, we investigate the average log-likelihood ratio (LLR) values and their distribution related to the erroneous bit-channels, and develop the Thresholded SC-Flip (TSCF) decoding algorithm. We also replace the LLR selection and sorting of SC-Flip with a comparator to reduce the implementation complexity. Simulation results demonstrate that for practical code lengths and a wide range of rates, TSCF shows negligible loss compared to the error-correction performance obtained when all single-errors are corrected. At matching maximum iterations, TSCF has an error-correction performance gain of up to $0.45$ dB compared with SC-Flip decoding. At matching error-correction performance, the computational complexity of TSCF is reduced by up to $40\%$ on average, and requires up to $5\times$ lower maximum number of iterations.
This version of the manuscript corrects an error in the previous ArXiv version. The corrections include all the simulations of SC-Flip-based and SC-Oracle decoders, along with associated comments in-text
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
