
In this paper, we propose algorithm to restore blurred and noisy images based on the discretized total variation minimization technique. The proposed method is based on an alternating technique for image deblurring and denoising. Start by finding an approximate image using a Tikhonov regularization method. This corresponds to a deblurring process with possible artifacts and noise remaining. In the denoising step, we use fast iterative shrinkage-thresholding algorithm (SFISTA) or fast gradient-based algorithm (FGP). Besides, we prove the convergence of the proposed algorithm. Numerical results demonstrate the efficiency and viability of the proposed algorithm to restore the degraded images.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
