Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental analysis in the test rig to detect temperature at the surface disc brake rotor using rubbing thermocouple

Authors: Adhitya, Mohammad; Siregar, Rolan; Sumarsono, Danardono A; Nazaruddin, Nazaruddin; Heryana, Ghany; Prosetyo, Sonki; Zainuri, Fuad;

Experimental analysis in the test rig to detect temperature at the surface disc brake rotor using rubbing thermocouple

Abstract

Brake failure is one of the causes of fatal accidents because the vehicle cannot be controlled properly. Therefore, research on improving brake safety needs to be assessed immediately. Brake temperature is used as an indicator of brake performance. If the temperature signal reads is different from the normal brake signal then it becomes an indication of a brake fault. How to measure the temperature of the rotating brake rotors and what sensors allow it to be used in real vehicles is the main question in this study. In this paper, there are two types of sensors that allow detecting brake temperature, namely rubbing thermocouple and a thermocouple sensor inserted in a pad with holes. The rubbing thermocouple sensor is expected to produce a higher heat because there is a friction effect between the rubbing steel and the rotor disc, whereas the sensor in the pad hole will show the real value. However, in the use of an actual vehicle, measuring the temperature by punching holes is not recommended because it can cause potential damage to the pad itself. When an infrared sensor is used, the installation is easier but this is not suitable because dirty conditions such as dust or sticky mud on the sensor surface will hinder the sensor reading. So the use of a rubbing thermocouple will be better in real vehicles. Therefore, the measurement of temperature by rubbing thermocouple must be made a correction factor that refers to the actual temperature. From the tests conducted, the results of measurements with rubbing thermocouple (T 4 ) can be converted to the equation T=–0,0058T 4 2 +2,7668T 4 –81,257. So how to make this equation can be proposed for the development of a safety warning system related to brake performance detection devices

Keywords

rubbing thermocouple; disc brake; detection temperature brake, тертьова термопара; дискове гальмо; визначення температури при гальмуванні, трущаяся термопара; дисковый тормоз; определение температуры при торможении, UDC 629.02

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 4
  • 2
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
2
4
gold