
La perturbation et l'incertitude des systèmes d'entraînement du moteur sont des termes très compliqués. Il n'y a pas d'exception pour le moteur à roulement autonome sans fente (SSBM), où les perturbations du moteur à roulement proviennent principalement de l'extérieur sous l'effet du vent, de l'intérieur sous l'effet du changement thermique des bobines et d'une modélisation incorrecte des processus d'enroulement. Tout d'abord, pour supprimer ces termes inversés, cet article propose un nouvel observateur de perturbation de super-torsion (STDOB) pour obtenir l'objectif souhaité de la conception de contrôle robuste. L'observateur de perturbation proposé était basé sur les informations des états mesurés et estimés dans le but d'adoucir le coût de la mesure. Deuxièmement, pour estimer les vitesses et les accélérations des mouvements sur les axes $x-$ et $ y-$ , le concept de stabilité basé sur la fonction homogène a été utilisé pour concevoir les observateurs d'état à temps fixe (FTSOBs) pour ces axes. L'état de l'opération de rotation sur l'axe $ \omega -$ a été estimé avec un observateur d'état à temps fixe. Troisièmement, pour contrôler les positions et la vitesse de rotation, un contrôle en mode glissant à temps fixe (FTSMC) à épaisseur de couche limite variable (VBLT) a été conçu pour forcer ces positions et les états de vitesse convergent vers les objectifs souhaités. Enfin, la stabilité de l'algorithme de contrôle proposé a été vérifiée théoriquement en utilisant la condition de Lyapunov et la simulation du logiciel Matlab. Les états obtenus étaient stables de manière acceptable avec de petits dépassements, de petits temps de sédimentation et des états stables stables.
La perturbación y la incertidumbre de los sistemas de accionamiento del motor son términos muy complicados. No hay excepción para el motor de autocojinete sin ranura (SSBM), donde las perturbaciones del motor de cojinete provienen principalmente del exterior como afecta el viento, del interior como el cambio térmico de las bobinas y el modelado incorrecto de los procesos de bobinado. En primer lugar, para eliminar estos términos invertidos, este documento propone un nuevo observador de perturbaciones de supertorsión (STDOB) para obtener el objetivo deseado del diseño de control robusto. El observador de perturbaciones propuesto se basó en la información de estados medidos y estimados con el objetivo de suavizar el coste de la medición. En segundo lugar, para estimar las velocidades y aceleraciones de los movimientos en los ejes $x- $ y $y-$, se utilizó el concepto de estabilidad de función homogénea para diseñar los observadores de estado de tiempo fijo (FTSOB) para estos ejes. El estado de la operación de rotación en $\omega -$ axis se estimó con un observador de estado de tiempo fijo. En tercer lugar, para controlar las posiciones y la velocidad de rotación, se diseñó un control de modo deslizante de tiempo fijo (FTSMC) de espesor de capa límite variable (VBLT) para forzar que estas posiciones y estados de velocidad converjan hacia los objetivos deseados. Finalmente, la estabilidad del algoritmo de control propuesto se verificó teóricamente mediante el uso de la condición de Lyapunov y la simulación del software MATLAB. Los estados obtenidos eran aceptablemente estables con pequeños rebasamientos, pequeños tiempos de asentamiento y estados estables estables.
The disturbance and uncertainty of the motor drive systems are very complicated terms. There is no exception for the slotless-self bearing motor (SSBM), where the perturbations of the bearing motor are mainly came from the outside as the wind affect, from inside as the thermal changing of the coils, and incorrect modeling of the winding processes. First, to delete these inversed terms, this paper proposes a new super-twisting disturbance observer (STDOB) to obtain the desired goal of the robust control design. The proposed disturbance observer was based on the information of measured and estimated states with the aim of softening the cost of the measurement. Second, to estimate the velocities and accelerations of the movements on $x-$ and $y-$ axes, the stability concept of homogeneous function-based was used to design the fixed-time state observers (FTSOBs) for these axes. The state of the rotational operation on $\omega -$ axis was estimated with a fixed-time state observer. Third, to control the positions and rotational speed, a variable boundary layer thickness (VBLT) fixed-time sliding mode control (FTSMC) was designed to force these positions and speed states converge to the desired goals. Finally, the stability of the proposed control algorithm was theoretically verified by using Lyapunov condition and simulation of MATLAB software. The obtained states were acceptably stable with small overshoots, small settling-times, and stable steady-states.
يعد الاضطراب وعدم اليقين في أنظمة تشغيل المحرك شروطًا معقدة للغاية. لا يوجد استثناء لمحرك المحمل الذاتي عديم الشقوق (SSBM)، حيث تأتي اضطرابات محرك المحمل بشكل أساسي من الخارج حيث تؤثر الرياح، ومن الداخل مثل التغير الحراري للملفات، والنمذجة غير الصحيحة لعمليات اللف. أولاً، لحذف هذه المصطلحات المعكوسة، تقترح هذه الورقة مراقب اضطراب فائق الالتواء جديد (STDOB) للحصول على الهدف المطلوب من تصميم التحكم القوي. استند مراقب الاضطراب المقترح إلى معلومات الحالات المقاسة والمقدرة بهدف تخفيف تكلفة القياس. ثانيًا، لتقدير سرعات وتسارع الحركات على المحاور $ x -$ و $y -$، تم استخدام مفهوم الاستقرار القائم على الوظيفة المتجانسة لتصميم مراقبي الحالة في الوقت الثابت (FTSOBs) لهذه المحاور. تم تقدير حالة عملية الدوران على محور $\omega -$ مع مراقب حالة ثابت الوقت. ثالثًا، للتحكم في المواضع وسرعة الدوران، تم تصميم التحكم في الوضع الانزلاقي الثابت لسمك الطبقة الحدودية المتغيرة (VBLT) (FTSMC) لإجبار هذه المواضع وحالات السرعة على التقارب مع الأهداف المرجوة. أخيرًا، تم التحقق من ثبات خوارزمية التحكم المقترحة نظريًا باستخدام شرط Lyapunov ومحاكاة برنامج MATLAB. كانت الدول التي تم الحصول عليها مستقرة بشكل مقبول مع تجاوزات صغيرة، وأوقات استقرار صغيرة، وحالات مستقرة مستقرة.
Iterative Learning Control in Engineering Practice, Artificial intelligence, Sliding Mode Control, Control (management), Quantum mechanics, Adaptive Control, Engineering, Analysis of Electric Machinery and Drive Systems, FOS: Electrical engineering, electronic engineering, information engineering, Control theory (sociology), FOS: Mathematics, variable boundary layer thickness, Electrical and Electronic Engineering, Finite-Time Stability, Biology, Arithmetic, Sliding-Mode Observer, Physics, Controller (irrigation), Bearing (navigation), fixed-time sliding mode control, Disturbance Observer, Observer (physics), Computer science, Agronomy, TK1-9971, Control and Systems Engineering, Notation, super-twisting disturbance observer, Physical Sciences, State observer, Nonlinear system, Robotic Control and Stabilization Techniques, Slotless-self bearing motor, Electrical engineering. Electronics. Nuclear engineering, Mathematics
Iterative Learning Control in Engineering Practice, Artificial intelligence, Sliding Mode Control, Control (management), Quantum mechanics, Adaptive Control, Engineering, Analysis of Electric Machinery and Drive Systems, FOS: Electrical engineering, electronic engineering, information engineering, Control theory (sociology), FOS: Mathematics, variable boundary layer thickness, Electrical and Electronic Engineering, Finite-Time Stability, Biology, Arithmetic, Sliding-Mode Observer, Physics, Controller (irrigation), Bearing (navigation), fixed-time sliding mode control, Disturbance Observer, Observer (physics), Computer science, Agronomy, TK1-9971, Control and Systems Engineering, Notation, super-twisting disturbance observer, Physical Sciences, State observer, Nonlinear system, Robotic Control and Stabilization Techniques, Slotless-self bearing motor, Electrical engineering. Electronics. Nuclear engineering, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
