Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Intelligent Transportation Systems
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Planning of Regional Urban Bus Charging Facility: A Case Study of Fengxian, Shanghai

Authors: Chenlei Wang; Da Xie; Chenghong Gu; Yanhong Fan;

Planning of Regional Urban Bus Charging Facility: A Case Study of Fengxian, Shanghai

Abstract

The electrification of public transport is of great significance to alleviating environmental pollution and energy problems. The construction of charging stations for electric buses (EBs) is the key step for the electrification of public transport and receives more and more attention. This paper proposes a new urban electric bus charging station planning algorithm which consists of two parts, park-maintaining (PM) charging station planning and midway supply (MS) charging station planning. Firstly, bus routes are classified based on charging demands. Accordingly, the PM charging station planning model is divided into full slow charging (FSC) model, Bus Rapid Transit (BRT) model and Hybrid model. Secondly, the improved grid AP algorithm is applied to plan MS charging stations to enhance the EB operation reliability. Then by multi-terminal charging pile optimization model, the economics of charging facilities construction is enhanced. Finally, via an ordered control charging algorithm, the economic profits of overall planning schemes are enhanced. The bus system in Fengxian, Shanghai is taken as an example to demonstrate the proposed method. Results prove that the proposed method can effectively meet the charging demands of EBs and improve the operating reliability of the EB system.

Related Organizations
Keywords

ordered charging, AP clustering algorithm, charging station planning, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production, /dk/atira/pure/subjectarea/asjc/2200/2203; name=Automotive Engineering, criteria importance though inter-criteria correlation (CRITIC), Electric bus, /dk/atira/pure/subjectarea/asjc/2200/2210; name=Mechanical Engineering, /dk/atira/pure/subjectarea/asjc/1700/1706; name=Computer Science Applications, /dk/atira/pure/sustainabledevelopmentgoals/sustainable_cities_and_communities; name=SDG 11 - Sustainable Cities and Communities

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green