
This study presents a digital twin-based seam correction framework for collaborative robotic laser welding. The framework addresses key manufacturing challenges, including dimensional inconsistencies, motion inversion, and lightweight part deformation, which significantly impact welding quality. Digital twin technology enables comprehensive analysis and supports real-time deviation monitoring and compensation. Experimental results demonstrate a reduction in maximum seam deviation from 2.9 mm to <0.2 mm, achieving an average deviation <0.1 mm. The system ensures precise laser beam positioning, leading to waterproof welding. Bézier curves are used in the seam correction, providing a flexible and scalable approach. This research contributes to improving welding accuracy and adaptability in flexible production environments while minimizing resource consumption and material waste.
welding, collaborative robot, robot trajectory generation, path correction, Electrical engineering. Electronics. Nuclear engineering, seam extraction, Industry 5.0, TK1-9971
welding, collaborative robot, robot trajectory generation, path correction, Electrical engineering. Electronics. Nuclear engineering, seam extraction, Industry 5.0, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
