Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CCF Transactions on High Performance Computing
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A parallel structured banded DC algorithm for symmetric eigenvalue problems

Authors: Shengguo Li; Xia Liao; Yutong Lu; Jose E. Roman; Xiaoqiang Yue;

A parallel structured banded DC algorithm for symmetric eigenvalue problems

Abstract

[EN] In this paper, a novel parallel structured divide-and-conquer (DC) algorithm is proposed for symmetric banded eigenvalue problems, denoted by PBSDC, which modifes the classical parallel banded DC (PBDC) algorithm by reducing its computational cost. The main tool that PBSDC uses is a parallel structured matrix multiplication algorithm (PSMMA), which can be much faster than the general dense matrix multiplication ScaLAPACK routine PDGEMM. Numerous experiments have been performed on Tianhe-2 supercomputer to compare PBSDC with PBDC and ELPA. For matrices with few defations, PBSDC can be much faster than PBDC since computations are saved. For matrices with many defations and/or small bandwidths, PBSDC can be faster than the tridiagonalization-based DC implemented in LAPACK and ELPA. However, PBSDC would become slower than ELPA for matrices with relatively large bandwidths.

The authors would like to thank the referees for their valuable comments. This work is supported in part by NSFC (No. 2021YFB0300101, 62073333, 61902411, 62032023, 12002382, 11275269, 42104078), 173 Program of China (2020-JCJQ-ZD-029), Open Research Fund from State Key Laboratory of High Performance Computing of China (HPCL) (No. 202101-01), Guangdong Natural Science Foundation (2018B030312002), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant (No. 2016ZT06D211). Jose E. Roman is supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-DA (PID2019-107379RB-I00). On behalf of all authors, the corresponding author states that there is no conflict of interest.

Related Organizations
Keywords

PBSDC, CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL, PSMMA, ScaLAPACK, Divide-and-conquer, Distributed-memory parallel algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 25
    download downloads 42
  • 25
    views
    42
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
25
42
Green