Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivo Digital UPMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Archivo Digital UPM
Conference object . 2023
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cec532...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2023
License: CC BY NC ND
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms

Authors: Soloviev, Vicente P.; Larrañaga Múgica, Pedro María; Bielza Lozoya, María Concepción;

Variational Quantum Algorithm Parameter Tuning with Estimation of Distribution Algorithms

Abstract

Variational quantum algorithms (VQAs) are hybrid approaches between classical and quantum computation, where a classical optimizer proposes parameter configurations for a quantum parametric circuit which is iteratively sampled. The overall performance of the algorithm depends on how the classical optimizer tunes the parameters of the quantum circuit. Several gradient-free and gradient-based approaches have been proposed in the literature to face this task. Estimation of distribution algorithms (EDAs) are a type of evolutionary algorithms where a probabilistic model is updated and sampled at each generation to optimize a cost function. EDAs have shown to be able to achieve good solutions in a reasonable computation time for different optimization problems, and thus, we believe that this algorithm can be a good option to overcome VQAs challenges such as the Barren plateaus phenomenon. In this paper, we study the use of three different EDAs, characterized by different probabilistic model complexities, to tune the parameters of two different VQAs to solver the Max Cut problem and to a VQA to simulate the behaviour of a molecule. Three EDA variants are compared to some state-of-the-art optimizers widely used for this task. Our results show statistical significant improvement of the EDA variants compared to different optimizers, and identify the VQAs characteristics that best fit to each EDA type. We also perform an analysis of the main EDAs hyper-parameters.

Related Organizations
Keywords

Quantum optimization, Informática, gradient-free approach, Estimation of distribution algorithm, Variational quantum algorithms, Gradient-based approach

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green