Downloads provided by UsageCounts
handle: 10016/45550 , 2117/84274
A strategy for the Hybridizable Discontinous Galerkin (HDG) solution of problems with voids, inclusions or free surfaces is proposed. It is based on an eXtended Finite Element philosophy with a level-set description of interfaces. Thus, the computational mesh is not required to fit the interface (i.e. the boundary), simplifying and reducing the cost of mesh generation and, in particular, avoiding continuous remeshing for evolving interfaces. Differently to previous proposals for HDG solution with non-fitting meshes, here the computational mesh covers the domain, avoiding extrapolations, and ensuring the robustness of the method. The local problem at elements not cut by the interface, and the global problem, are discretized as usual in HDG. A modified local problem is considered at elements cut by the interface. At every cut element, an auxiliary trace variable on the boundary is introduced, which is eliminated afterwards using the boundary conditions on the interface, keeping the original unknowns and the structure of the local problem solver. An efficient and robust methodology for numerical integration in cut elements, in the context of high-order approximations, is also proposed. Numerical experiments demonstrate how X-HDG keeps the optimal convergence, superconvergence, and accuracy of HDG with no need of adapting the computational mesh to the interface boundary.
moving boundary, Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits, Level-sets, interface, moving boundary, Hybridizable Discontinuous Galerkin (HDG), high-order, level-sets, X-FEM, numerical integration, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Interface Moving boundary Hybridizable Discontinuous Galerkin (HDG) High-order Level-sets X-FEM Numerical integration, X-FEM, :65 Numerical analysis::65N Partial differential equations, boundary value problems [Classificació AMS], :Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits [Àrees temàtiques de la UPC], Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs, Aeronáutica, level-sets, Ingenieurwissenschaften, Boundary value problems for second-order elliptic equations, Moving boundary, numerical experiment, Anàlisi numèrica, convergence, Stability and convergence of numerical methods for boundary value problems involving PDEs, Interface, Hybridizable Discontinuous Galerkin (HDG), high-order, finite element, hybridizable discontinuous Galerkin, Numerical integration, numerical integration, interface, High-order, Numerical analysis, ddc: ddc:620
moving boundary, Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits, Level-sets, interface, moving boundary, Hybridizable Discontinuous Galerkin (HDG), high-order, level-sets, X-FEM, numerical integration, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Interface Moving boundary Hybridizable Discontinuous Galerkin (HDG) High-order Level-sets X-FEM Numerical integration, X-FEM, :65 Numerical analysis::65N Partial differential equations, boundary value problems [Classificació AMS], :Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits [Àrees temàtiques de la UPC], Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs, Aeronáutica, level-sets, Ingenieurwissenschaften, Boundary value problems for second-order elliptic equations, Moving boundary, numerical experiment, Anàlisi numèrica, convergence, Stability and convergence of numerical methods for boundary value problems involving PDEs, Interface, Hybridizable Discontinuous Galerkin (HDG), high-order, finite element, hybridizable discontinuous Galerkin, Numerical integration, numerical integration, interface, High-order, Numerical analysis, ddc: ddc:620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 54 | |
| downloads | 110 |

Views provided by UsageCounts
Downloads provided by UsageCounts