Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UPCommons
Article . 2015
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Scientific Computing
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2015 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2015 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MediaTUM
Article . 2014
Data sources: MediaTUM
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Scientific Computing
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2016
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
OPUS Augsburg
Article . 2015
Data sources: OPUS Augsburg
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

eXtended Hybridizable Discontinous Galerkin (X-HDG) for Void Problems

Extended hybridizable discontinous Galerkin (X-HDG) for void problems
Authors: Gürkan, Ceren; Sala Lardies, Esther; Kronbichler, Martin; Fernández Méndez, Sonia;

eXtended Hybridizable Discontinous Galerkin (X-HDG) for Void Problems

Abstract

A strategy for the Hybridizable Discontinous Galerkin (HDG) solution of problems with voids, inclusions or free surfaces is proposed. It is based on an eXtended Finite Element philosophy with a level-set description of interfaces. Thus, the computational mesh is not required to fit the interface (i.e. the boundary), simplifying and reducing the cost of mesh generation and, in particular, avoiding continuous remeshing for evolving interfaces. Differently to previous proposals for HDG solution with non-fitting meshes, here the computational mesh covers the domain, avoiding extrapolations, and ensuring the robustness of the method. The local problem at elements not cut by the interface, and the global problem, are discretized as usual in HDG. A modified local problem is considered at elements cut by the interface. At every cut element, an auxiliary trace variable on the boundary is introduced, which is eliminated afterwards using the boundary conditions on the interface, keeping the original unknowns and the structure of the local problem solver. An efficient and robust methodology for numerical integration in cut elements, in the context of high-order approximations, is also proposed. Numerical experiments demonstrate how X-HDG keeps the optimal convergence, superconvergence, and accuracy of HDG with no need of adapting the computational mesh to the interface boundary.

Keywords

moving boundary, Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits, Level-sets, interface, moving boundary, Hybridizable Discontinuous Galerkin (HDG), high-order, level-sets, X-FEM, numerical integration, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Interface Moving boundary Hybridizable Discontinuous Galerkin (HDG) High-order Level-sets X-FEM Numerical integration, X-FEM, :65 Numerical analysis::65N Partial differential equations, boundary value problems [Classificació AMS], :Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits [Àrees temàtiques de la UPC], Classificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs, Aeronáutica, level-sets, Ingenieurwissenschaften, Boundary value problems for second-order elliptic equations, Moving boundary, numerical experiment, Anàlisi numèrica, convergence, Stability and convergence of numerical methods for boundary value problems involving PDEs, Interface, Hybridizable Discontinuous Galerkin (HDG), high-order, finite element, hybridizable discontinuous Galerkin, Numerical integration, numerical integration, interface, High-order, Numerical analysis, ddc: ddc:620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 54
    download downloads 110
  • 54
    views
    110
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
16
Top 10%
Top 10%
Top 10%
54
110
Green
hybrid