Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Collectanea mathematica
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The symmetrization map and $$\Gamma$$-contractions

The symmetrization map and \(\Gamma\)-contractions
Authors: Pal, Sourav;

The symmetrization map and $$\Gamma$$-contractions

Abstract

The symmetrization map $\pi:\mathbb C^2\rightarrow \mathbb C^2$ is defined by $ \pi(z_1,z_2)=(z_1+z_2,z_1z_2). $ The closed symmetrized bidisc $\Gamma$ is the symmetrization of the closed unit bidisc $\overline{\mathbb D^2}$, that is, \[ \Gamma = \pi(\overline{\mathbb D^2})=\{ (z_1+z_2,z_1z_2)\,:\, |z_i|\leq 1, i=1,2 \}. \] A pair of commuting Hilbert space operators $(S,P)$ for which $\Gamma$ is a spectral set is called a $\Gamma$-contraction. Unlike the scalars in $\Gamma$, a $\Gamma$-contraction may not arise as a symmetrization of a pair of commuting contractions, even not as a symmetrization of a pair of commuting bounded operators. We characterize all $\Gamma$-contractions which are symmetrization of pairs of commuting contractions. We show by constructing a family of examples that even if a $\Gamma$-contraction $(S,P)=(T_1+T_2,T_1T_2)$ for a pair of commuting bounded operators $T_1,T_2$, no real number less than $2$ can be a bound for the set $\{ \|T_1\|,\|T_2\| \}$ in general. Then we prove that every $\Gamma$-contraction $(S,P)$ is the restriction of a $\Gamma$-contraction $(\widetilde S, \widetilde P)$ to a common reducing subspace of $\widetilde S, \widetilde P$ and that $(\widetilde S, \widetilde P)=(A_1+A_2,A_1A_2)$ for a pair of commuting operators $A_1,A_2$ with $\max \{\|A_1\|, \|A_2\|\} \leq 2$. We find new characterizations for the $\Gamma$-unitaries and describe the distinguished boundary of $\Gamma$ in a different way. We also show some interplay between the fundamental operators of two $\Gamma$-contractions $(S,P)$ and $(S_1,P)$.

Comment: A few typos got fixed. 16 pages

Related Organizations
Keywords

Spectral sets of linear operators, Mathematics - Functional Analysis, \( \Gamma \)-contraction, Invariant subspaces of linear operators, Several-variable operator theory (spectral, Fredholm, etc.), symmetrization map, Dilations, extensions, compressions of linear operators, spectral set

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green