Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Pattern Analysis and Machine Intelligence
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Searching to Exploit Memorization Effect in Deep Learning With Noisy Labels

Authors: Hansi Yang; Quanming Yao; Bo Han; James T. Kwok;

Searching to Exploit Memorization Effect in Deep Learning With Noisy Labels

Abstract

Sample selection approaches are popular in robust learning from noisy labels. However, how to control the selection process properly so that deep networks can benefit from the memorization effect is a hard problem. In this paper, motivated by the success of automated machine learning (AutoML), we propose to control the selection process by bi-level optimization. Specifically, we parameterize the selection process by exploiting the general patterns of the memorization effect in the upper-level, and then update these parameters using predicting accuracy obtained from model training in the lower-level. We further introduce semi-supervised learning algorithms to utiilize noisy-labeled data as unlabeled data. To solve the bi-level optimization problem efficiently, we consider more information from the validation curvature by the Newton method and cubic regularization method. We provide convergence analysis for both optimization methods. Results show that while both methods can converge to an (approximately) stationary point, the cubic regularization method can find better local optimal than the Newton method with less time. Experiments on both benchmark and real-world data sets demonstrate that the proposed searching method can lead to significant improvements upon existing methods. Compared with existing AutoML approaches, our method is much more efficient on finding a good selection schedule.

Related Organizations
Keywords

Optimization, Nonconvex optimization, Schedules, 000, Noise measurement, Label-noise learning, Training, Deep learning, Semisupervised learning, Automated machine learning (AutoML), Noise, Prediction algorithms, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!