Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/1160...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
https://doi.org/10.23919/eusip...
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/jd...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.60692/c4...
Other literature type . 2017
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-prime sampling jitter analysis

تحليل القلق الناجم عن أخذ عينات الرهن العقاري المشترك
Authors: Usham V. Dias; Seshan Srirangarajan;

Co-prime sampling jitter analysis

Abstract

Les matrices co-prime et les échantillonneurs sont des schémas sub-Nyquist populaires pour estimer les statistiques de deuxième ordre au taux de Nyquist. Cet article se concentre sur les perturbations dans les emplacements des tableaux ou les temps d'échantillonnage, et analyse son effet sur l'ensemble de différences. Sur la base de cette analyse, nous proposons une méthode d'estimation de l'autocorrélation qui utilise au mieux les données échantillonnées afin d'améliorer la précision de l'estimation de l'autocorrélation et donc de l'estimation spectrale. Notre analyse indique qu'un tel avantage est limité uniquement aux échantillonneurs et ne se répercute pas sur les réseaux d'antennes. De plus, nous obtenons des expressions pour la complexité de calcul de l'estimation d'autocorrélation et fournissons une borne supérieure sur le nombre de multiplications et d'ajouts requis pour sa mise en œuvre matérielle.

Las matrices co-primas y los muestreadores son esquemas sub-Nyquist populares para estimar estadísticas de segundo orden a la tasa de Nyquist. Este documento se centra en las perturbaciones en las ubicaciones de la matriz o los tiempos de muestreo, y analiza su efecto en el conjunto de diferencias. Con base en este análisis, proponemos un método para estimar la autocorrelación que hace el mejor uso de los datos muestreados para mejorar la precisión de la estimación de la autocorrelación y, por lo tanto, la estimación espectral. Nuestro análisis indica que tal ventaja se limita solo a los muestreadores y no se transfiere a los conjuntos de antenas. Además, obtenemos expresiones para la complejidad computacional de la estimación de autocorrelación y proporcionamos un límite superior en el número de multiplicaciones y adiciones requeridas para su implementación en hardware.

Co-prime arrays and samplers are popular sub-Nyquist schemes for estimating second order statistics at the Nyquist rate. This paper focuses on the perturbations in the array locations or sampling times, and analyzes its effect on the difference set. Based on this analysis we propose a method to estimate the autocorrelation which makes best use of the sampled data in order to improve the estimation accuracy of the autocorrelation and hence the spectral estimate. Our analysis indicates that such an advantage is limited only to samplers, and does not carry over to the antenna arrays. In addition, we obtain expressions for the computational complexity of the autocorrelation estimation and provide an upper bound on the number of multiplications and additions required for its hardware implementation.

تعد المصفوفات الرئيسية المشتركة وأخذ العينات من المخططات شبه النايكية الشائعة لتقدير إحصائيات الدرجة الثانية بمعدل نايكويست. تركز هذه الورقة على الاضطرابات في مواقع الصفيف أو أوقات أخذ العينات، وتحلل تأثيرها على مجموعة الاختلاف. بناءً على هذا التحليل، نقترح طريقة لتقدير الارتباط الذاتي الذي يحقق أفضل استخدام للبيانات المأخوذة من العينات من أجل تحسين دقة التقدير للارتباط الذاتي وبالتالي التقدير الطيفي. يشير تحليلنا إلى أن هذه الميزة تقتصر فقط على أجهزة أخذ العينات، ولا تنتقل إلى مصفوفات الهوائي. بالإضافة إلى ذلك، نحصل على تعبيرات عن التعقيد الحسابي لتقدير الارتباط الذاتي ونوفر حدًا أعلى لعدد المضاعفات والإضافات المطلوبة لتنفيذ أجهزته.

Related Organizations
Keywords

Computer Networks and Communications, Sensor Arrays, Jitter, Set (abstract data type), Skew, Coprime integers, Difference set, Engineering, Prime (order theory), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Channel Estimation, Electrical and Electronic Engineering, Nyquist rate, Statistics, Nyquist–Shannon sampling theorem, Detector, Sampling (signal processing), Computer science, Programming language, Algorithm, Combinatorics, Coprime Arrays, Autocorrelation, Physical Sciences, Efficient Power Control in Wireless Networks, Computer Science, Signal Processing, Telecommunications, Computer vision, Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing, Mathematics, Array Processing for Signal Localization and Estimation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 12
  • 3
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
3
12
Green