Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Parallel and Distributed Systems
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Role of Idle Waves, Desynchronization, and Bottleneck Evasion in the Performance of Parallel Programs

Authors: Ayesha Afzal; Georg Hager; Gerhard Wellein;

The Role of Idle Waves, Desynchronization, and Bottleneck Evasion in the Performance of Parallel Programs

Abstract

The performance of highly parallel applications on distributed-memory systems is influenced by many factors. Analytic performance modeling techniques aim to provide insight into performance limitations and are often the starting point of optimization efforts. However, coupling analytic models across the system hierarchy (socket, node, network) fails to encompass the intricate interplay between the program code and the hardware, especially when execution and communication bottlenecks are involved. In this paper we investigate the effect of "bottleneck evasion" and how it can lead to automatic overlap of communication overhead with computation. Bottleneck evasion leads to a gradual loss of the initial bulk-synchronous behavior of a parallel code so that its processes become desynchronized. This occurs most prominently in memory-bound programs, which is why we choose memory-bound benchmark and application codes, specifically an MPI-augmented STREAM Triad, sparse matrix-vector multiplication, and a collective-avoiding Chebyshev filter diagonalization code to demonstrate the consequences of desynchronization on two different supercomputing platforms. We investigate the role of idle waves as possible triggers for desynchronization and show the impact of automatic asynchronous communication for a spectrum of code properties and parameters, such as saturation point, matrix structures, domain decomposition, and communication concurrency. Our findings reveal how eliminating synchronization points (such as collective communication or barriers) precipitates performance improvements that go beyond what can be expected by simply subtracting the overhead of the collective from the overall runtime.

13 pages, 7 figures, 6 tables

Related Organizations
Keywords

Performance (cs.PF), FOS: Computer and information sciences, Computer Science - Performance, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green