
This paper proposes a novel prediction method for Total Column Ozone (TCO), based on the combination of Support Vector Regression (SVR) algorithms and different predictive variables coming from satellite data (Suomi National Polar-orbiting Partnership satellite), numerical models (Global Forecasting System model, GFS) and direct measurements. Data from satellite consists of temperature and humidity profiles at different heights, and TCO measurements the days before the prediction. GFS model provides predictions of temperature and humidity for the day of prediction. Alternative data measured in situ, such as aerosol optical depth at different wavelengths, are also considered in the system. The SVR methodology is able to obtain an accurate TCO prediction from these predictive variables, outperforming other regression methodologies such as neural networks. Analysis on the best subset of features in TCO prediction is also carried out in this paper. The experimental part of the paper consists in the application of the SVR to real data collected at the radiometric observatory of Madrid, Spain, where ozone measurements obtained with a Brewer spectrophotometer are available, and allow the system’s training and the evaluation of its performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
