Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Methods in ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computer Methods in Applied Mechanics and Engineering
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A semi-implicit exactly fully well-balanced relaxation scheme for the Shallow Water Linearized Moment Equations

A semi-implicit exactly fully well-balanced relaxation scheme for the shallow water linearized moment equations
Authors: C. Caballero-Cárdenas; I. Gómez-Bueno; A. Del Grosso; J. Koellermeier; T. Morales de Luna;

A semi-implicit exactly fully well-balanced relaxation scheme for the Shallow Water Linearized Moment Equations

Abstract

When dealing with shallow water simulations, the velocity profile is often assumed to be constant along the vertical axis. However, since in many applications this is not the case, modeling errors can be significant. Hence, in this work, we deal with the Shallow Water Linearized Moment Equations (SWLME), in which the velocity is no longer constant in the vertical direction, where a polynomial expansion around the mean value is considered. The linearized version implies neglecting the non-linear terms of the basis coefficients in the higher order equations. As a result, the model is always hyperbolic and the stationary solutions can be more easily computed. Then, our objective is to propose an efficient, accurate and robust numerical scheme for the SWLME model, specially adapted for low Froude number situations. Hence, we describe a semi-implicit second order exactly fully well-balanced method. More specifically, a splitting is performed to separate acoustic and material phenomena. The acoustic waves are treated in an implicit manner to gain in efficiency when dealing with subsonic flow regimes, whereas the second order of accuracy is achieved thanks to a polynomial reconstruction and Strang-splitting method. We also exploit a reconstruction operator to achieve the fully well-balanced character of the method. Extensive numerical tests demonstrate the well-balanced properties and large speed-up compared to traditional methods.

Related Organizations
Keywords

SAINT-VENANT SYSTEM, ACCURACY, Shallow water moment equations, MODELS, Fully exactly well-balanced schemes, relaxation schemes, FINITE-VOLUME METHODS, First-order nonlinear hyperbolic equations, NUMBER, Magnetohidrodinámica, Finite volume methods for initial value and initial-boundary value problems involving PDEs, semi-implicit schemes, IMPLICIT, Semi-implicit schemes, FOS: Mathematics, NUMERICAL-METHODS, Mathematics - Numerical Analysis, LARGE TIME-STEP, Relaxation schemes, ORDER, Finite volume methods applied to problems in fluid mechanics, Numerical Analysis (math.NA), Mathematics and Statistics, DERIVATION, shallow water moment equations, fully exactly well-balanced schemes, Análisis numérico

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid