Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OTFS-SCMA: A Downlink NOMA Scheme for Massive Connectivity in High Mobility Channels

Authors: Haifeng, Wen; Weijie, Yuan; Zilong, Liu; Shuangyang, Li; Liu, Zilong;

OTFS-SCMA: A Downlink NOMA Scheme for Massive Connectivity in High Mobility Channels

Abstract

This paper studies a downlink system that combines orthogonal-time-frequency-space (OTFS) modulation and sparse code multiple access (SCMA) to support massive connectivity in high-mobility environments. We propose a cross-domain receiver for the considered OTFS-SCMA system which efficiently carries out OTFS symbol estimation and SCMA decoding in a joint manner. This is done by iteratively passing the extrinsic information between the time domain and the delay-Doppler (DD) domain via the corresponding unitary transformation to ensure the principal orthogonality of errors from each domain. We show that the proposed OTFS-SCMA detection algorithm exists at a fixed point in the state evolution when it converges. To further enhance the error performance of the proposed OTFS-SCMA system, we investigate the cooperation between downlink users to exploit the diversity gains and develop a distributed cooperative detection (DCD) algorithm with the aid of belief consensus. Our numerical results demonstrate the effectiveness and convergence of the proposed algorithm and show an increased spectral efficiency compared to the conventional OTFS transmission.

Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Distributed cooperation, Computer Science - Information Theory, Information Theory (cs.IT), Multiple access, 620, 004, State evolution, Non-orthogonal multiple access (NOMA), Orthogonal time frequency space (OTFS), FOS: Electrical engineering, electronic engineering, information engineering, Sparse code multiple access (SCMA), Electrical Engineering and Systems Science - Signal Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green