Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE/ACM Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minimum-Delay Multicast Algorithms for Mesh Overlays

Authors: Kianoosh Mokhtarian; Hans-Arno Jacobsen;

Minimum-Delay Multicast Algorithms for Mesh Overlays

Abstract

We study delivering delay-sensitive data to a group of receivers with minimum latency. This latency consists of the time that the data spends in overlay links as well as the delay incurred at each overlay node, which has to send out a piece of data several times over a finite-capacity network connection. The latter part is a significant portion of the total delay as we show in the paper, yet it is often ignored or only partially addressed by previous multicast algorithms. We analyze the actual delay in multicast trees and consider building trees with minimum-average and minimum-maximum delay. We show the NP-hardness of these problems and prove that they cannot be approximated in polynomial time to within any reasonable approximation ratio. We then present a set of algorithms to build minimum-delay multicast trees that cover a wide range of application requirements---min-average and min-max delay, for different scales, real-time requirements, and session characteristics. We conduct comprehensive experiments on different real-world datasets, using various overlay network models. The results confirm that our algorithms can achieve much lower delays (up to 60% less) and up to orders-of-magnitude faster running times (i.e., supporting larger scales) than previous related approaches.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!