
arXiv: 2103.09663
handle: 1959.4/unsworks_80652
The scaled boundary finite element method (SBFEM) is capable of generating polyhedral elements with an arbitrary number of surfaces. This salient feature significantly alleviates the meshing burden being a bottleneck in the analysis pipeline in the standard finite element method (FEM). In this paper, we implement polyhedral elements based on the SBFEM into the commercial finite element software ABAQUS. To this end, user elements are provided through the user subroutine UEL. Detailed explanations regarding the data structures and implementational aspects of the procedures are given. The focus of the current implementation is on interfacial problems and therefore, element-based surfaces are created on polyhedral user elements to establish interactions. This is achieved by an overlay of standard finite elements with negligible stiffness, provided in the ABAQUS element library, with polyhedral user elements. By means of several numerical examples, the advantages of polyhedral elements regarding the treatment of non-matching interfaces and automatic mesh generation are clearly demonstrated. Thus, the performance of ABAQUS for problems involving interfaces is augmented based on the availability of polyhedral meshes. Due to the implementation of polyhedral user elements, ABAQUS can directly handle complex geometries given in the form of digital images or stereolithography (STL) files. In order to facilitate the use of the proposed approach, the code of the UEL is published open-source and can be downloaded from https://github.com/ShukaiYa/SBFEM-UEL.
34 pages, 34 figures
FOS: Computer and information sciences, anzsrc-for: 01 Mathematical Sciences, anzsrc-for: 49 Mathematical sciences, ABAQUS UEL, scaled boundary finite element method, 620, anzsrc-for: 40 Engineering, Boundary element methods for initial value and initial-boundary value problems involving PDEs, polyhedral element, Structured surfaces and interfaces, coexistent phases, interfacial problems, Computer Science - Mathematical Software, anzsrc-for: 09 Engineering, Mathematical Software (cs.MS), Boundary element methods applied to problems in solid mechanics, 40 Engineering
FOS: Computer and information sciences, anzsrc-for: 01 Mathematical Sciences, anzsrc-for: 49 Mathematical sciences, ABAQUS UEL, scaled boundary finite element method, 620, anzsrc-for: 40 Engineering, Boundary element methods for initial value and initial-boundary value problems involving PDEs, polyhedral element, Structured surfaces and interfaces, coexistent phases, interfacial problems, Computer Science - Mathematical Software, anzsrc-for: 09 Engineering, Mathematical Software (cs.MS), Boundary element methods applied to problems in solid mechanics, 40 Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
