Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSA Toulouse
Article . 2019
Data sources: HAL-INSA Toulouse
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simultaneous system design and path planning: A sampling-based algorithm

Authors: Molloy, Kevin; Denarie, Laurent; Vaisset, Marc; Simeon, Thierry; Cortés, Juan;

Simultaneous system design and path planning: A sampling-based algorithm

Abstract

This paper addresses the simultaneous design and path-planning problem, in which features associated to the bodies of a mobile system must be selected to find the best design that optimizes its motion between two given configurations. Solving individual path-planning problems for all possible designs and selecting the best result would be straightforward only for very simple cases. We propose a more efficient approach that combines discrete (design) and continuous (path) optimization in a single stage. It builds on an extension of a sampling-based algorithm, which simultaneously explores the configuration-space costmap of all possible designs, aiming to find the best path-design pair. The algorithm filters out unsuitable designs during the path search, which breaks down the combinatorial explosion. Illustrative results are presented for relatively simple (academic) robotic examples, showing that even in these simple cases, the computational cost can be reduced by two orders of magnitude with respect to the naïve approach. A preliminary application to challenging problems in computational biology related to protein design is also discussed.

Keywords

Molecular Biology/Biochemistry [q-bio.BM], [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO], sampling-based algorithms, robot motion planning, 004, 620, computational biology, [SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO], [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM], protein design, [SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM], [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Top 10%
Green
bronze