
This study proposes a novel routing algorithm using Q-learning. Q-learning is a machine learning (artificial intelligence) algorithm using the reinforcement learning policy which can be used to solve problems for which there are different ways to reach their goal. The proposed algorithm, the Modified Q-learning routing algorithm (MQRA), has eliminated the episodes of Q-learning required to gradually learn in different stages and this has made it a rapid routing algorithm. MQRA can be used in various types of networks. This study uses MQRA in mobile ad-hoc networks, its generalization to fisheye state routing (FSR) (a routing algorithm) and its performance results are compared with the standard FSR. Experimental results confirm the applicability and potential of the proposed algorithm.
reinforcement learning, routing in manets, QA76.75-76.765, mobile ad-hoc networks, routing algorithm, Computer software, fsr protocol
reinforcement learning, routing in manets, QA76.75-76.765, mobile ad-hoc networks, routing algorithm, Computer software, fsr protocol
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
