Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematical Methods...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Methods in the Applied Sciences
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2019
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A reduced‐order extrapolated natural boundary element method based on POD for the 2D hyperbolic equation in unbounded domain

A reduced-order extrapolated natural boundary element method based on POD for the 2D hyperbolic equation in unbounded domain
Authors: Fei Teng; Zhengdong Luo; Jing Yang;

A reduced‐order extrapolated natural boundary element method based on POD for the 2D hyperbolic equation in unbounded domain

Abstract

In this article, we primarily focuses to study the order‐reduction for the classical natural boundary element (NBE) method for the two‐dimensional (2D) hyperbolic equation in unbounded domain. To this end, we first build a semi‐discretized format about time for the hyperbolic equation and discuss the existence, stability, and convergence of the time semi‐discretized solutions. We then establish the classical fully discretized NBE format from the time semi‐discretized one and analyze the existence, stability, and convergence of the classical NBE solutions. Next, using proper orthogonal decomposition method, we build a reduced‐order extrapolated NBE (ROENBE) format containing very few unknowns but having adequately high accuracy, and we also discuss the existence, stability, and convergence of the ROENBE solutions. Finally, we use some numerical examples to show that the ROENBE method is far superior to the classical NBE one. It shows that the ROENBE method is reliable and effective for solving the 2D hyperbolic equation with the unbounded domain.

Related Organizations
Keywords

convergence, Error bounds for boundary value problems involving PDEs, natural boundary element method, existence, Existence problems for PDEs: global existence, local existence, non-existence, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, stability, proper orthogonal decomposition, two-dimensional hyperbolic equation with a unbounded domain, reduced-order extrapolated natural boundary element format, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Initial-boundary value problems for second-order hyperbolic equations, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!