Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The KIPS Transaction...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The KIPS Transactions PartA
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Massively Parallel Algorithm for Fuzzy Vector Quantization

퍼지 벡터 양자화를 위한 대규모 병렬 알고리즘
Authors: Luong Van Huynh; Cheol-Hong Kim; Jong-Myon Kim;

A Massively Parallel Algorithm for Fuzzy Vector Quantization

Abstract

ABSTRACT Vector quantization algorithm based on fuzzy clustering has been widely used in the field of data compression since the use of fuzzy clustering analysis in the early stages of a vector quantization process can make this process less sensitive to its initialization. However, the process of fuzzy clustering is computationally very intensive because of its complex framework for the quantitative formulation of the uncertainty involved in the training vector space. To overcome the computational burden of the process, this paper introduces an array architecture for the implementation of fuzzy vector quantization (FVQ). The arrayarchitecture, which consists of 4,096 processing elements (PEs), provides a computationally efficient solution by employing an effective vector assignment strategy during the clustering process. Experimental results indicatethat the proposed parallel implementation providessignificantly greater performance and efficiency than appropriately scaled alternative array systems. In addition, the proposed parallel implementation provides 1000x greater performance and 100x higher energy efficiency than other implementations using today’s ARMand TI DSP processors in the same 130nm technology. These results demonstrate that the proposed parallel implementation shows the potential for improved performance and energy efficiency.Keywords:Fuzzy Vector Quantization, Fuzzy Clustering, Image Compression, Parallel Processing Architecture, Embedded Processors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze