Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bergen Open Research Archive - UiB
Article . 2024 . Peer-reviewed
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://doi.org/10.1137/1.9781...
Part of book or chapter of book . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fixed-Parameter Tractability of Maximum Colored Path and Beyond

Fixed-parameter tractability of maximum colored path and beyond
Authors: Fedor V. Fomin; Petr A. Golovach; Tuukka Korhonen; Kirill Simonov; Giannos Stamoulis;

Fixed-Parameter Tractability of Maximum Colored Path and Beyond

Abstract

We introduce a general method for obtaining fixed-parameter algorithms for problems about finding paths in undirected graphs, where the length of the path could be unbounded in the parameter. The first application of our method is as follows. We give a randomized algorithm, that given a colored \(n\) -vertex undirected graph, vertices \(s\) and \(t\) , and an integer \(k\) , finds an \((s,t)\) -path containing at least \(k\) different colors in time \(2^{k}n^{\mathcal{O}(1)}\) . This is the first FPT algorithm for this problem, and it generalizes the algorithm of Björklund, Husfeldt, and Taslaman on finding a path through \(k\) specified vertices. It also implies the first \(2^{k}n^{\mathcal{O}(1)}\) time algorithm for finding an \((s,t)\) -path of length at least \(k\) . Our method yields FPT algorithms for even more general problems. For example, we consider the problem where the input consists of an \(n\) -vertex undirected graph \(G\) , a matroid \(M\) whose elements correspond to the vertices of \(G\) and which is represented over a finite field of order \(q\) , a positive integer weight function on the vertices of \(G\) , two sets of vertices \(S,T\subseteq V(G)\) , and integers \(p,k,w\) , and the task is to find \(p\) vertex-disjoint paths from \(S\) to \(T\) so that the union of the vertices of these paths contains an independent set of \(M\) of cardinality \(k\) and weight \(w\) , while minimizing the sum of the lengths of the paths. We give a \(2^{p+\mathcal{O}(k^{2}\log(q+k))}n^{\mathcal{O}(1)}w\) time randomized algorithm for this problem.

Country
Norway
Keywords

FOS: Computer and information sciences, Graph theory (including graph drawing) in computer science, Graph algorithms (graph-theoretic aspects), Randomized algorithms, finding long paths, Computer Science - Data Structures and Algorithms, algebraic techniques in FPT, Parameterized complexity, tractability and kernelization, Data Structures and Algorithms (cs.DS), FPT algorithms, Paths and cycles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green