
The rise of multicore processors and cloud computing is putting enormous pressure on the software community to find solutions to the difficulty of parallel and distributed programming. At the same time, there is more--and more varied--interest in data-centric programming languages than at any time in computing history, in part because these languages parallelize naturally. This juxtaposition raises the possibility that the theory of declarative database query languages can provide a foundation for the next generation of parallel and distributed programming languages. In this paper I reflect on my group's experience over seven years using Datalog extensions to build networking protocols and distributed systems. Based on that experience, I present a number of theoretical conjectures that may both interest the database community, and clarify important practical issues in distributed computing. Most importantly, I make a case for database researchers to take a leadership role in addressing the impending programming crisis. This is an extended version of an invited lecture at the ACM PODS 2010 conference [32].
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
