Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Russian Physics Journal
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microstructure, Phase Composition, and Microhardness of the NiCr/Al Gradient Material Produced by Wire-Feed Electron-Beam Additive Manufacturing

Authors: Reunova, K. A.; Zagibalova, E. A.; Astapov, D. O.; Astafurov, Sergey V.; Kolubaev, Evgeniy A.; Astafurova, Elena G.;

Microstructure, Phase Composition, and Microhardness of the NiCr/Al Gradient Material Produced by Wire-Feed Electron-Beam Additive Manufacturing

Abstract

Metal additive manufacturing is one of the new industrial technologies for fast prototyping of the metalcomponents with a complex internal architecture, gradient composition, or functionally gradient properties. Intermetallic alloys are hard-to-work materials, their conventional production and post-production processing are very complex and expensive routine. New production methods, such as an additive manufacturing, are promising for fast and relatively simple fabrication of the intermetallic billets with the desired phase composition and architecture. Multiple-wire electron-beam additive manufacturing is among them. In this work, we fabricated a bimetallic material (plain wall) using the industrial NiCr and Al wires. For the as-built state, we provided the elemental and phase analyses of the NiCr lower part and Al upper part of the billet with the focus on the intermediate gradient layers between two materials. During the additive manufacturing of the NiCr part of the billet, the Ni-based fcc solid solution forms. Scanning electron microscopical analysis, X-ray diffraction analysis, and energy dispersive spectroscopy confirm the formation of NiAl and Ni3Al intermetallic phases in the transition zone under electron beam additive manufacturing of the bimetallic material. This intermetallic zone has high microhardness (up to 10 GPa). The Al3Ni intermetallic phase has been found in the Al-based part of the billet, but the microhardness of the composite material (Al + Al3Ni) is just a bit higher than that in the upper Al-based part of the billet.

Keywords

интерметаллиды, микроструктура, микротвердость, электронно-лучевое аддитивное производство

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green