Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions on Cryp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transactions on Cryptographic Hardware and Embedded Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/0a...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/6b...
Other literature type . 2023
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using Precedence-Constrained Scheduling

الحساب المتجه والمتوازي للتجانسات الكبيرة السلسة باستخدام الجدولة المقيدة بالأسبقية
Authors: Kittiphon Phalakarn; Vorapong Suppakitpaisarn; Francisco Rodríguez-Henríquez; M.A. Hasan;

Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using Precedence-Constrained Scheduling

Abstract

Strategies and their evaluations play important roles in speeding up the computation of large smooth-degree isogenies. The concept of optimal strategies for such computation was introduced by De Feo et al., and virtually all implementations of isogeny-based protocols have adopted this approach, which is provably optimal for single-core platforms. In spite of its inherent sequential nature, several recent works have studied ways of speeding up this isogeny computation by exploiting the rich parallelism available in vectorized and multi-core platforms. One obstacle to taking full advantage of this parallelism, however, is that De Feo et al.’s strategies are not necessarily optimal in multi-core environments. To illustrate how the speed of vectorized and parallel isogeny computation can be improved at the strategylevel, we present two novel software implementations that utilize a state-of-the-art evaluation technique, called precedence-constrained scheduling (PCS), presented by Phalakarn et al., with our proposed strategies crafted for these environments. Our first implementation relies only on the parallelism provided by multi-core processors. The second implementation targets multi-core processors supporting the latest generation of the Intel’s Advanced Vector eXtensions (AVX) technology, commonly known as AVX-512IFMA instructions. To better handle the computational concurrency associated with PCS, we equip both implementations with extensive synchronization techniques. Our first implementation outperforms the implementation of Cervantes-Vázquez et al. by yielding up to 14.36% reduction in the execution time, when targeting platforms with two- to four-core processors. Our second implementation, equipped with four cores, achieves up to 34.05% reduction in the execution time compared to the single-core implementation of Cheng et al. of CHES 2022.

Keywords

Parallel computing, Computer engineering. Computer hardware, Computer Networks and Communications, Distributed Constraint Optimization Problems and Algorithms, Information technology, Software optimization, Mathematical analysis, TK7885-7895, Multicore Architectures, Parallel Computing, Distributed Grid Computing Systems, Vectorization, Concurrency, Synchronization (alternating current), Elliptic curve, Parallel Computing and Performance Optimization, FOS: Mathematics, GPU Computing, Precedence-constrained scheduling, Parallelism (grammar), Computer network, Multi-core processor, Performance Optimization, Mathematical optimization, Isogeny, T58.5-58.64, Heterogeneous Computing, Computer science, Distributed computing, Programming language, Algorithm, Isogeny-based cryptography, Isogeny computation, Hardware and Architecture, Channel (broadcasting), Implementation, Computer Science, Physical Sciences, Computation, Scheduling (production processes), Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Published in a Diamond OA journal