
We present analytic models and simulation techniques that describe the performance of the multifrontal method on distributed memory architectures. We focus on particular strategies for partitioning, clustering, and mapping of task nodes to processors in order to minimize the overall parallel execution time and minimize communication costs. The performance model has bees used to obtain estimates for the speedups of various engineering and scientific problems, on several distributed architectures. The result is that the available parallelism of these problems is strongly dependent on the sparsity structure of the input matrices. >
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
