
arXiv: 1810.10982
The discrete Fr��chet distance is a popular measure for comparing polygonal curves. An important variant is the discrete Fr��chet distance under translation, which enables detection of similar movement patterns in different spatial domains. For polygonal curves of length $n$ in the plane, the fastest known algorithm runs in time $\tilde{\cal O}(n^{5})$ [Ben Avraham, Kaplan, Sharir '15]. This is achieved by constructing an arrangement of disks of size ${\cal O}(n^{4})$, and then traversing its faces while updating reachability in a directed grid graph of size $N := {\cal O}(n^2)$, which can be done in time $\tilde{\cal O}(\sqrt{N})$ per update [Diks, Sankowski '07]. The contribution of this paper is two-fold. First, although it is an open problem to solve dynamic reachability in directed grid graphs faster than $\tilde{\cal O}(\sqrt{N})$, we improve this part of the algorithm: We observe that an offline variant of dynamic $s$-$t$-reachability in directed grid graphs suffices, and we solve this variant in amortized time $\tilde{\cal O}(N^{1/3})$ per update, resulting in an improved running time of $\tilde{\cal O}(n^{4.66...})$ for the discrete Fr��chet distance under translation. Second, we provide evidence that constructing the arrangement of size ${\cal O}(n^{4})$ is necessary in the worst case, by proving a conditional lower bound of $n^{4 - o(1)}$ on the running time for the discrete Fr��chet distance under translation, assuming the Strong Exponential Time Hypothesis.
Published at TALG
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
