Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Mathematics and Mathematical Sciences
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.60692/9j...
Other literature type . 2001
Data sources: Datacite
https://dx.doi.org/10.60692/53...
Other literature type . 2001
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Some properties of the ideal of continuous functions with pseudocompact support

بعض خصائص مثالية للوظائف المستمرة مع دعم مضغوط كاذب
Authors: E. A. Abu Osba; H. Al-Ezeh;

Some properties of the ideal of continuous functions with pseudocompact support

Abstract

Let C(X) be the ring of all continuous real‐valued functions defined on a completely regular T1‐space. Let CΨ(X) and CK(X) be the ideal of functions with pseudocompact support and compact support, respectively. Further equivalent conditions are given to characterize when an ideal of C(X) is a P‐ideal, a concept which was originally defined and characterized by Rudd (1975). We used this new characterization to characterize when CΨ(X) is a P‐ideal, in particular we proved that CK(X) is a P‐ideal if and only if CK(X) = {f∈C(X) : f = 0 except on a finite set}. We also used this characterization to prove that for any ideal I contained in CΨ(X), I is an injective C(X)‐module if and only if coz I is finite. Finally, we showed that CΨ(X) cannot be a proper prime ideal while CK(X) is prime if and only if X is an almost compact noncompact space and ∞ is an F‐point. We give concrete examples exemplifying the concepts studied.

Related Organizations
Keywords

Algebra and Number Theory, Study of properties and structures of commutative rings, Deformations and Structures of Hom-Lie Algebras, Injective and flat modules and ideals in commutative rings, Cluster Algebras and Triangulated Categories, Algebraic properties of function spaces in general topology, Computer science, Algorithm, Real-valued functions in general topology, Physical Sciences, QA1-939, FOS: Mathematics, Idealization, Geometry and Topology, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold