Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fluids and Barriers ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fluids and Barriers of the CNS
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fluids and Barriers of the CNS
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fluids and Barriers of the CNS
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incidental findings of typical iNPH imaging signs in asymptomatic subjects with subclinical cognitive decline

Authors: Doortje C. Engel; Lukas Pirpamer; Edith Hofer; Reinhold Schmidt; Cornelia Brendle;
APC: 2,138.14 EUR

Incidental findings of typical iNPH imaging signs in asymptomatic subjects with subclinical cognitive decline

Abstract

AbstractBackgroundThe etiology of idiopathic normal pressure hydrocephalus (iNPH) remains unclear. Little is known about the pre-symptomatic stage. This study aimed to investigate the association of neuropsychological data with iNPH-characteristic imaging changes compared to normal imaging and unspecific atrophy in a healthy population.MethodsWe extracted data from the community-dwelling Austrian Stroke Prevention Family Study (ASPS-Fam) database (2006–2010). All subjects underwent a baseline and identical follow-up examination after 3–5 years with MR imaging and an extensive neuropsychological test battery (Trail Making Test B, short physical performance balance, walking speed, memory, visuo-practical skills, composite scores of executive function and g-factor). We categorized the subjects into “iNPH”-associated, non-specific “atrophy,” and “normal” based on the rating of different radiological cerebrospinal fluid (CSF) space parameters. We noted how the categories developed over time. We assessed the association of the image categories with the neuropsychological data, different demographic, and lifestyle parameters (age, sex, education, alcohol intake, arterial hypertension, hypercholesterolemia), and the extent of white matter hyperintensities. We investigated whether neuropsychological data associated with the image categories were independent from other parameters as confounders.ResultsOne hundred and thirteen subjects, aged 50–70 years, were examined. The imaging category “iNPH” was only present at follow-up. A third of subjects with “atrophy” at baseline changed to the category “iNPH” at follow-up. More white matter hyperintensities (WMH) were present in later “iNPH” subjects. Subjects with “iNPH” performed worse than “normal” subjects on executive function (p = 0.0118), memory (p = 0.0109), and Trail Making Test B (TMT-B.p < 0.0001). Education, alcohol intake, diabetes, arterial hypertension, and hypercholesterolemia had no effect. Age, number of females, and the extent of white matter hyperintensities were higher in “iNPH” than in “normal” subjects but did not significantly confound the neuropsychological results.ConclusionsApparent asymptomatic subjects with “iNPH” imaging characteristics presented with subclinical cognitive decline and showed worse executive function, memory, and TMT-B results than “normal” subjects. WMH seem to play a role in the etiology before ventriculomegaly. Clinical screening of individuals with incidental iNPH-characteristic imaging and conspicuous results sof these neurocognitive tests needs further validation.

Keywords

Male, Evans’ index, Short physical performance balance test, Aged [MeSH] ; Cognitive Dysfunction/psychology [MeSH] ; Tight high convexity ; Cohort Studies [MeSH] ; Male [MeSH] ; Idiopathic normal pressure hydrocephalus ; Asymptomatic Diseases [MeSH] ; Female [MeSH] ; Follow-Up Studies [MeSH] ; Stand score ; Hydrocephalus, Normal Pressure/diagnostic imaging [MeSH] ; Neuropsychological testing ; Humans [MeSH] ; Prospective Studies [MeSH] ; Evans’ index ; Retrospective Studies [MeSH] ; Middle Aged [MeSH] ; Incidental Findings [MeSH] ; Short physical performance balance test ; Mental Status and Dementia Tests [MeSH] ; Trail Making Test-B ; Research ; Cognitive Dysfunction/diagnostic imaging [MeSH] ; Hydrocephalus, Normal Pressure/psychology [MeSH] ; Magnetic Resonance Imaging/methods [MeSH], Cohort Studies, Idiopathic normal pressure hydrocephalus, Humans, Cognitive Dysfunction, Prospective Studies, RC346-429, Aged, Retrospective Studies, ddc:610, Incidental Findings, Research, Neuropsychological testing, Middle Aged, Mental Status and Dementia Tests, Magnetic Resonance Imaging, Hydrocephalus, Normal Pressure, Tight high convexity, Trail Making Test-B, Asymptomatic Diseases, Female, Neurology. Diseases of the nervous system, Follow-Up Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold