
arXiv: 1801.00571
We present a modelling framework for multi-target tracking based on possibility theory and illustrate its ability to account for the general lack of knowledge that the target-tracking practitioner must deal with when working with real data. We also introduce and study variants of the notions of point process and intensity function, which lead to the derivation of an analogue of the probability hypothesis density (PHD) filter. The gains provided by the considered modelling framework in terms of flexibility lead to the loss of some of the abilities that the PHD filter possesses; in particular the estimation of the number of targets by integration of the intensity function. Yet, the proposed recursion displays a number of advantages such as facilitating the introduction of observation-driven birth schemes and the modelling the absence of information on the initial number of targets in the scene. The performance of the proposed approach is demonstrated on simulated data.
Methodology (stat.ME), FOS: Computer and information sciences, TK, Statistics - Methodology
Methodology (stat.ME), FOS: Computer and information sciences, TK, Statistics - Methodology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
