
The numerical quotient-difference algorithm, or the qd-algorithm , can be used for determining the poles of a meromorphic function directly from its Taylor coefficients. We show that the poles computed in the qd-algorithm, regardless of their multiplicities, are converging to the solution of a generalized eigenvalue problem. In a special case when all the poles are simple, such generalized eigenvalue problem can be viewed as a reformulation of Prony's method, a method that is closely related to the Ben-Or/Tiwari algorithm for interpolating a multivariate sparse polynomial in computer algebra.
Ben-Or/Tiwari algorithm, Prony's method, generalised eigenvalue, sparse polynomial interpolation
Ben-Or/Tiwari algorithm, Prony's method, generalised eigenvalue, sparse polynomial interpolation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
