Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.60692/6y...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/za...
Other literature type . 2023
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heart disease detection using inertial Mann relaxed $ CQ $ algorithms for split feasibility problems

الكشف عن أمراض القلب باستخدام خوارزميات مان المريحة بالقصور الذاتي $ CQ $ لمشاكل الجدوى المقسمة
Authors: Suthep Suantai; Pronpat Peeyada; Andreea Fulga; Watcharaporn Cholamjiak;

Heart disease detection using inertial Mann relaxed $ CQ $ algorithms for split feasibility problems

Abstract

<abstract><p>This study investigates the weak convergence of the sequences generated by the inertial relaxed $ CQ $ algorithm with Mann's iteration for solving the split feasibility problem in real Hilbert spaces. Moreover, we present the advantage of our algorithm by choosing a wider range of parameters than the recent methods. Finally, we apply our algorithm to solve the classification problem using the heart disease dataset collected from the UCI machine learning repository as a training set. The result shows that our algorithm performs better than many machine learning methods and also extreme learning machine with fast iterative shrinkage-thresholding algorithm (FISTA) and inertial relaxed $ CQ $ algorithm (IRCQA) under consideration according to accuracy, precision, recall, and F1-score.</p></abstract>

Keywords

Optimization, Artificial intelligence, Economics, Computational Mechanics, Set (abstract data type), Fixed-Point Problems, split feasibility problem, Quantum mechanics, Engineering, Range (aeronautics), Compressed Sensing, Artificial Intelligence, Machine learning, QA1-939, Image (mathematics), data classification, Iterative Algorithms, Theory and Applications of Extreme Learning Machines, Economic growth, Physics, heart disease data, Iterative Algorithms for Nonlinear Operators and Optimization, Theory and Applications of Compressed Sensing, Computer science, Programming language, Algorithm, Aerospace engineering, Computational Theory and Mathematics, Thresholding, inertial technique, Computer Science, Physical Sciences, Convergence (economics), weak convergence, Inertial frame of reference, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold