
arXiv: 2012.07312
This paper considers the competitive resource allocation problem in Multiple-Input Multiple-Output (MIMO) interfering channels, when users maximize their energy efficiency. Considering each transmitter-receiver pair as a selfish player, conditions on the existence and uniqueness of the Nash equilibrium of the underlying noncooperative game are obtained. A decentralized asynchronous algorithm is proven to converge towards this equilibrium under the same conditions. Two frameworks are considered for the analysis of this game. On the one hand, the game is rephrased as a Quasi-Variational Inequality (QVI). On the other hand, the best response of the players is analyzed in light of the contraction mappings. For this problem, the contraction approach is shown to lead to tighter results than the QVI one. When specializing the obtained results to OFDM networks, the obtained conditions appear to significantly outperform state-of-the-art works, and to lead to much simpler decentralized algorithms. Numerical results finally assess the obtained conditions in different settings.
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
